girniy.ru 1
Урок 2

Координаты вектора

Цели: ввести понятие координат вектора и рассмотреть правила действий над векторами с заданными координатами.

Ход урока

I. Проверка домашнего задания.

1. Устно решить задачи:

1) назвать числа х и у, удовлетворяющие равенству: ; ;

2) задача № 913.

2. На доске двое учащихся решают задачи №№ 911 (в) и 912 (и, к).

II. Изучение нового материала.

1. Напомнить задание прямоугольной системы координат и начертить ее.

2. Ввести координатные векторы и (рис. 275).

3. Нулевой вектор можно представить в виде ; его координаты равны нулю: (0; 0).

4. Координаты равных векторов соответственно равны.

5. Рассмотреть правила, позволяющие по координатам векторов находить координаты их суммы, разности и произведения вектора на число (доказательства указанных правил учащиеся могут рассмотреть самостоятельно).

6. Записать в тетрадях правила:

и – данные векторы

1) ;


2) ;

3) .

III. Закрепление изученного материала (решение задач).

1. Решить задачу № 917 на доске и в тетрадях.

2. Устно по рисунку 276 решить задачу № 918.

3. Решить задачу № 919 (самостоятельно).

4. Решить задачу № 920 (а, в) на доске и в тетрадях.

5. Устно решить задачи № 922–925, используя правила, записанные в тетрадях.

6. Записать утверждение задачи № 927 без доказательства:

1) Если два вектора коллинеарны, то координаты одного вектора пропорциональны координатам другого: если коллинеарен вектору , то x1 : x2 = y1 : y2.

2) Если координаты одного вектора пропорциональны координатам другого вектора, то эти векторы коллинеарны.

7. Решить задачу № 928.

Решение

Используем условие коллинеарности векторов: .

1) (3; 7) и (6; 14), так как ;

2) (–2; 1) и (2; –1), так как .

IV. Самостоятельная работа контролирующего характера.

Вариант I

Решить задачи № 912 (а, г); № 920 (г); № 988 (а, б); № 921 (а, в);
№ 914 (а).

Вариант II

Решить задачи №№ 912 (в, д); 920 (д); 988 (в, г); 921 (б, г); 914 (б).

V. Итоги урока.

Домашнее здание: подготовиться к устному опросу по карточкам, повторить материал пунктов 76–87; ответить на вопросы 1–20, с. 213–214 и на вопросы 1–8, с. 249 учебника; решить задачи №№ 798, 795; 990 (а) (для векторов и ).