https://electroinfo.net

girniy.ru 1 2 3

ТЕПЛОВОЙ РЕЖИМ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ И АТМОСФЕРЫ



Поверхность, непосредственно нагреваемую солнечными лучами и отдающую тепло нижележащим слоям и воздуху, называют деятельной. Температура деятельной поверхности, ее величина и изменение (суточный и годовой ход) определяются тепловым балансом.

Максимальное значение почти всех составляющих теплового баланса наблюдается в околополуденные часы. Исключение представляет максимум теплообмена в почве, приходящийся на утренние часы.

Максимальные амплитуды суточного хода составляющих теплового баланса отмечаются в летнее время, минимальные — зимой. В суточном ходе температуры поверхности, сухой и лишенной растительности, в ясный день максимум наступает после 13 часов, а минимум — около момента восхода Солнца. Облачность нарушает правильный ход температуры поверхности и вызывает смещение моментов максимумов и минимумов. Большое влияние на температуру поверхности оказывают ее влажность и растительный покров. Дневные максимумы температуры поверхности могут составлять + 80°С и более. Суточные колебания достигают 40°. Их величина зависит от широты места, времени года, облачности, тепловых свойств поверхности, ее цвета, шероховатости, от растительного покрова, а также от экспозиции склонов.

Годовой ход температуры деятельного слоя различен на разных широтах. Максимум температуры в средних и высоких широтах обычно наблюдается в июне, минимум — в январе. Амплитуды годовых колебаний температуры деятельного слоя в низких широтах очень малы, в средних широтах на суше они достигают 30°. На годовые колебания температуры поверхности в умеренных и высоких широтах сильно влияет снежный покров.

На передачу тепла от слоя к слою затрачивается время, и моменты наступления максимальных и минимальных в течение суток температур запаздывают на каждые 10 см примерно на 3 часа. Если на поверхности наивысшая температура была около 13 часов, на глубине 10 см максимум температуры наступит около 16 часов, а на глубине 20 см — около 19 часов и т. д. При последовательном нагревании нижележащих слоев от вышележащих каждый слой поглощает некоторое количество тепла. Чем глубже слой, тем меньше тепла он получает и тем слабее в нем колебания температуры. Амплитуда суточных колебаний температуры с глубиной уменьшается на каждые 15 см в 2 раза. Это значит, что если на поверхности амплитуда равна 16°, то на глубине 15 см — 8°, а на глубине 30 см — 4°.


На глубине в среднем около 1 м суточные колебания температуры почвы "затухают". Слой, в котором эти колебания практически прекращаются, называется слоем постоянной суточной температуры.

Чем больше период колебания температур, тем глубже они распространяются. В средних широтах слой постоянной годовой температуры находится на глубине 19—20 м, в высоких широтах на глубине 25 м. В тропических широтах годовые амплитуды температуры невелики и слой постоянной годовой амплитуды расположен на глубине всего 5—10 м . Моменты наступления в течение года максимальных и минимальных температур запаздывают в среднем на 20—30 суток на каждый метр. Таким образом, если наименьшая температура на поверхности наблюдалась в январе, на глубине 2 м она наступает в начале марта. Наблюдения показывают, что температура в слое постоянной годовой температуры близка к средней годовой температуре воздуха над поверхностью.

Вода, обладая большей теплоемкостью и меньшей теплопроводностью, чем суша, медленнее нагревается и медленнее отдает тепло. Часть солнечных лучей, падающих на водную поверхность, поглощается самым верхним слоем, а часть их проникает на значительную глубину, нагревая непосредственно некоторый ее слой.

Подвижность воды делает возможным перенос тепла. Вследствие турбулентного перемешивания передача тепла вглубь происходит в 1000 — 10 000 раз быстрее, чем путем теплопроводности. При остывании поверхностных слоев воды возникает тепловая конвекция, сопровождающаяся перемешиванием. Суточные колебания температуры на поверхности Океана в высоких широтах в среднем всего 0,1°, в умеренных — 0,4°, в тропических — 0,5°. Глубина проникновения этих колебаний 15— 20м. Годовые амплитуды температуры на поверхности Океана от 1° в экваториальных широтах до 10,2° в умеренных. Годовые колебания температуры проникают на глубину 200—300 м. Моменты максимумов температуры водоемов запаздывают по сравнению с сушей. Максимум наступает около 15—16 часов, минимум — через 2—3 часа после восхода Солнца.


Тепловой режим нижнего слоя атмосферы.

Воздух нагревается в основном не солнечными лучами непосредственно, а за счет передачи ему тепла подстилающей поверхностью (процессы излучения и теплопроводности). Важнейшую роль в переносе тепла от поверхности в вышележащие слои тропосферы играют турбулентный теплообмен и передача скрытой теплоты парообразования. Беспорядочное движение частиц воздуха, вызванное его нагреванием неравномерно нагретой подстилающей поверхности, называют термической турбулентностью или термической конвекцией.

Если вместо мелких хаотических движущихся вихрей начинают преобладать мощные восходящие (термики) и менее мощные нисходящие движения воздуха, конвекция называется упорядоченной. Нагревающийся у поверхности воздух устремляется вверх, перенося тепло. Термическая конвекция может развиваться только до тех пор, пока воздух имеет температуру выше температуры той среды, в которой он поднимается (неустойчивое состояние атмосферы). Если температура поднимающегося воздуха окажется равной температуре окружающей его среды, поднятие прекратится (безразличное состояние атмосферы); если же воздух станет холоднее окружающей среды, он начнет опускаться (устойчивое состояние атмосферы).

При турбулентном движении воздуха все новые и новые его частицы, соприкасаясь с поверхностью, получают тепло, а поднимаясь и перемешиваясь, отдают его другим частицам. Количество тепла, получаемое воздухом от поверхности посредством турбулентности, больше количества тепла, получаемого им в результате излучения, в 400 раз и в результате передачи путем молекулярной теплопроводности — почти в 500 000 раз. Тепло переносится от поверхности в атмосферу вместе с испарившейся с нее влагой, а затем выделяется в процессе конденсации. Каждый грамм водяного пара содержит 600 кал скрытой теплоты парообразования.

В поднимающемся воздухе температура изменяется вследствие адиабатического процесса, т. е. без обмена теплом с окружающей средой, за счет преобразования внутренней энергии газа в работу и работы во внутреннюю энергию. Так как внутренняя энергия пропорциональна абсолютной температуре газа, происходит изменение температуры. Поднимающийся воздух расширяется, производит работу, на которую затрачивает внутреннюю энергию, и температура его понижается. Опускающийся воздух, наоборот, сжимается, затраченная на расширение энергия освобождается, и температура воздуха растет.


Сухой или содержащий водяные пары, но ненасыщенный ими воздух, поднимаясь, адиабатически охлаждается на 1° на каждые 100 м. Воздух, насыщенный водяными парами, при подъеме на 100 м охлаждается менее чем на 1°, так как в нем происходит конденсация, сопровождающаяся выделением тепла, частично компенсирующего тепло, затраченное на расширение.

Величина охлаждения насыщенного воздуха при подъеме его на 100 м зависит от температуры воздуха и от атмосферного давления и изменяется в значительных пределах. Ненасыщенный воздух, опускаясь нагревается на 1° на 100 м, насыщенный на меньшую величину, так как в нем происходит испарение, на которое затрачивается тепло. Поднимающийся насыщенный воздух обычно теряет влагу в процессе выпадения осадков и становится ненасыщенным. При опускании такой воздух нагревается на 1° на 100 м.

В результате понижение температуры при подъеме оказывается меньше, чем ее повышение при опускании, и поднявшийся, а затем опустившийся воздух на одном и том же уровне при одном и том же давлении, будет иметь разную температуру — конечная температура будет выше начальной. Такой процесс называется псевдоадиабатическим.

Так как воздух нагревается главным образом от деятельной поверхности, температура с высотой в нижнем слое атмосферы, как правило, понижается. Вертикальный градиент для тропосферы в среднем составляет 0,6° на 100 м. Он считается положительным, если температура с высотой убывает, и отрицательным, если она повышается. В нижнем, приземном слое воздуха (1,5—2 м) вертикальные градиенты могут быть очень большими.

Возрастание температуры с высотой называется инверсией, а слой воздуха, в котором температура с высотой возрастает,— слоем инверсии. В атмосфере почти всегда можно наблюдать слои инверсии. У земной поверхности при сильном ее охлаждении в результате излучения возникает радиационная инверсия (инверсия излучения) . Она появляется в ясные летние ночи и может охватить слой в несколько сотен метров. Зимой в ясную погоду инверсия сохраняется несколько суток и даже недель. Зимние инверсии могут охватывать слой до 1,5 км.


Усилению инверсии способствуют условия рельефа: холодный воздух стекает в понижение и там застаивается. Такие инверсии называются орографическими. Мощные инверсии, называемые адвентивными, образуются в тех случаях, когда сравнительно теплый воздух приходит на холодную поверхность, охлаждающую нижние его слои. Адвективные инверсии дней выражены слабо, ночью они усиливаются радиационным выхолаживанием. Весной образованию таких инверсий способствует еще не стаявший снежный покров.

С явлением инверсии температуры в приземном слое воздуха связаны заморозки. Заморозки — понижение температуры воздуха ночью до 0° и ниже в то время, когда средние суточные температуры выше 0° (осень, весна). Может быть и так, что заморозки наблюдаются только на почве при температуре воздуха над ней выше нуля.

Тепловое состояние атмосферы оказывает влияние на распространение в ней света. В тех случаях, когда температура с высотой резко изменяется (повышается или понижается), возникают миражи.

Мираж — мнимое изображение предмета, появляющееся над ним (верхний мираж) или под ним (нижний мираж). Реже бывают боковые миражи (изображение появляется сбоку). Причина миражей — искривление траектории световых лучей, идущих от предмета к глазу наблюдателя, в результате их преломления на границе слоев с разной плотностью.

Суточный и годовой ход температуры в нижнем слое тропосферы до высоты 2 км в общем отражает ход температуры поверхности. С удалением от поверхности амплитуды колебаний температуры уменьшаются, а моменты максимума и минимума запаздывают. Суточные колебания температуры воздуха зимой заметны до высоты 0,5 км, летом — до 2 км.

Амплитуда суточных колебаний температуры с увеличением широты места уменьшается. Наибольшая суточная амплитуда — в субтропических широтах, наименьшая — в полярных. В умеренных широтах суточные амплитуды различны в разные времена года. В высоких широтах наибольшая суточная амплитуда весной и осенью, в умеренных — летом.


Годовой ход температуры воздуха зависит прежде всего от широты места. От экватора к полюсам годовая амплитуда колебаний температуры воздуха увеличивается.

Выделяют четыре типа годового хода температуры по величине амплитуды и по времени наступления крайних температур.

Экваториальный тип характеризуется двумя максимумами (после моментов равноденствия) и двумя минимумами (после моментов солнцестояния). Амплитуда над Океаном около 1°, над сушей — до 10°. Температура весь год положительная.

Тропический тип — один максимум (после летнего солнцестояния) и одни минимум (после зимнего солнцестояния). Амплитуда над Океаном — около 5°, на суше — до 20°. Температура весь год положительная.

Умеренный тип — один максимум (в северном полушарии над сушей в июле, над Океаном в августе) и один минимум (в северном полушарии над сушей в январе, над Океаном в феврале). Отчетливо выделяются четыре сезона: теплый, холодный и два переходных. Годовая амплитуда температуры увеличивается с увеличением широты, а также по мере удаления от Океана: на побережье 10°, вдали от Океана — до 60° и более (в Якутске — —62,5°). Температура в холодный сезон отрицательна.

Полярный тип — зима очень продолжительная и холодная, лето короткое, прохладное. Годовые амплитуды 25° и больше (над сушей до 65°). Температура большую часть года отрицательная. Общая картина годового хода температуры воздуха осложняется влиянием факторов, среди которых особенно большое значение принадлежит подстилающей поверхности. Над водной поверхностью годовой ход температуры сглаживается, над сушей, наоборот, выражен резче. Сильно снижает годовые температуры снежный и ледяной покров. Влияют также высота места над уровнем Океана, рельеф, удаленность от Океана, облачность. Плавный ход годовой температуры воздуха нарушается возмущениями, вызываемыми вторжением холодного или, наоборот, теплого воздуха. Примером могут быть весенние возвраты холодов (волны холода), осенние возвраты тепла, зимние оттепели в умеренных широтах.


Распределение температуры воздуха у подстилающей поверхности.

Если бы земная поверхность была однородна, а атмосфера и гидросфера неподвижны, распределение тепла по поверхности Земли определялось бы только поступлением солнечной радиации и температура воздуха постепенно убывала бы от экватора к полюсам, оставаясь одинаковой на каждой параллели (солярные температуры). Действительно среднегодовые температуры воздуха определяются тепловым балансом и зависят от характера подстилающей поверхности и непрерывного межширотного теплообмена, осуществляемого посредством перемещения воздуха и вод Океана, а поэтому существенно отличаются от солярных.

Действительные средние годовые температуры воздуха у земной поверхности в низких широтах ниже, а в высоких, наоборот, выше солярных. В южном полушарии действительные средние годовые температуры на всех широтах ниже, чем в северном. Средняя температура воздуха у земной поверхности в северном полушарии в январе +8° С, в июле +22° С; в южном — в июле +10° С, в январе +17° С. Годовые амплитуды колебаний температуры воздуха, составляющие для северного полушария 14°, а для южного только 7°, свидетельствуют о меньшей континентальности южного полушария. Средняя за год температура воздуха у земной поверхности в целом +14° С.

Если отметить на различных меридианах наивысшие средние годовые или месячные температуры и соединить их, получим линию теплового максимума, называемую также часто термическим экватором. Правильнее, вероятно, считать термическим экватором параллель (широтный круг) с наивысшими нормальными средними температурами года или какого-либо месяца. Термический экватор не совпадает с географическим и "сдвинут" к северу. В течение года он перемещается от 20° с. ш. (в июле) до 0° (в январе). Причин смещения термического экватора к северу несколько: преобладание суши в тропических широтах северного полушария, антарктический полюс холода, и, возможно, имеет значение продолжительность лета (лето южного полушария короче).


Тепловые пояса.

За границы тепловых (температурных) поясов принимают изотермы. Тепловых поясов семь:

жаркий пояс, расположенный между годовой изотермой +20° северного и южного полушарий;два умеренных пояса, ограниченные со стороны экватора годовой изотермой +20°, со стороны полюсов изотермой +10° самого теплого месяца;

два холодных пояса, находящиеся между изотермой + 10° и и самого теплого месяца;

два пояса мороза, расположенные около полюсов и ограниченные изотермой 0° самого теплого месяца. В северном полушарии это Гренландия и пространство около северного полюса, в южном — область внутри параллели 60° ю. ш.

Температурные пояса — основа климатических поясов. В пределах каждого пояса наблюдаются большие разнообразия температур в зависимости от подстилающей поверхности. На суше очень велико влияние рельефа на температуру. Изменение температуры с высотой на каждые 100 м неодинаково в различных температурных поясах. Вертикальный градиент в нижнем километровом слое тропосферы изменяется от 0° над ледяной поверхностью Антарктиды до 0,8° летом над тропическими пустынями. Поэтому способ приведения температур к уровню моря с помощью среднего градиента (6°/100 м) может иногда привести к грубым ошибкам. Изменение температуры с высотой — причина вертикальной климатической поясности.



следующая страница >>